

Payu

Current release: 1.1.2+25.g91f2831.dirty

Payu is a workflow management tool for running numerical models in
supercomputing environments.

Payu was designed to allow users to start running climate models immediately,
without having to re-learn the nuances of countless runscripts across countless
models. Running a model like the MOM ocean model should only require a few
commands:

mkdir new_expt; cd new_expt
payu init -m mom
payu run

Currently, payu is very highly customised for users of NCI computing
environments, with a very strong dependence on environment modules [http://modules.sourceforge.net/], the PBS
scheduler [http://en.wikipedia.org/wiki/Portable_Batch_System], and an MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface] runtime environment. Using payu on other machines
will require, at a minimum, the installation of these services, as well as a
potentially significant modification of the codebase.

User Guide

Contents:

	Installation
	NCI Users

	General Use

	Usage
	Overview

	Setting up the laboratory

	Running your experiment

	Cleaning up

	Postprocessing

	Metadata and Related Experiments

	Configuring your experiment
	Configuration Settings

	Miscellaneous

	Manifests
	Introduction

	Manifest contents

	Experiment tracking

	Design Notes
	Model and Experiment Layout

	Style Guide

Support and Development

Support is coordinated through issues, discussions and pull requests on the GitHub repository https://github.com/payu-org/payu

Installation

Payu is currently only supported for users on the NCI computing systems. If you
wish to use payu on other systems, see the notes at the end of this document.

NCI Users

Payu is made available for users of NCI HPC systems in conda environments.

The ACCESS-Hive ACCESS-OM models [https://access-hive.org.au/models/run-a-model/run-access-om/#model-specific-prerequisites] documentation contains instructions for
using ACCESS-NRI supported conda environments.

CLEX CMS [https://github.com/coecms] also provides conda environments [https://github.com/coecms/access-esm#quickstart-guide] that support payu.

Local installation

Using pip [https://pip.pypa.io/en/stable/cli/pip_install] it is possible to install payu from PyPI:

pip install payu --user

If you want to use the latest version of payu, then you can install directly
from the repository:

pip install payu@git+https://github.com/payu-org/payu --user

or clone the codebase and install from there:

git clone https://github.com/payu-org/payu
cd payu
pip install . --user

General Use

Payu is not supported for general use, and it would be a tremendous surprise if
it even worked on other machines. In particular, the following services are
presumed to be available:

	Environment Modules [http://modules.sourceforge.net/]: Not only do we assume support for environment
modules, but we also assume the existence of certain modules, such as
an OpenMPI module and particular versions of Python.

	PBS Scheduler [http://en.wikipedia.org/wiki/Portable_Batch_System]: Payu relies on executables that are provided with most
PBS implementations, such as Torque or PBSPro. Most of the argument flags
are currently based around PBSPro conventions.

	MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface]: Jobs are submitted via mpirun and most of the argument flags
are based on the OpenMPI implementation.

There are also some additional assumptions based on the architecture of the NCI
HPC facilities.

Despite these rather strict requirements, there is opportunity for generalising
payu for other platforms, such as through new drivers for alternative
schedulers and parallelisation platforms. Please create a GitHub Issue [https://github.com/payu-org/payu/issues] if
you are interested in porting payu to your machine.

Usage

This document outlines the basic procedure to setup and run an experiment with
payu.

Overview

The general layout of a payu-supported experiment consists of two directories:

	The laboratory, which contains the executable, input files, actively
running experiments, and archived model output, and the

	The control directory, where the experiment is configured and run.

This separation allows us to run multiple self-resubmitting experiments
simultaneously that can share common executables and input data. It also
allows the flexibility to have the relatively small control directories
in a location that is continuously backed up.

Using a git repository for the experiment

It is recommended to use the git [https://git-scm.com] version control system for the payu
control directory. This allows the experiment to be easily copied via
cloning. There is inbuilt support in payu for an experiment runlog which
uses git to track changes to configuration files between experiment runs. There are payu commands
for creating and moving between git branches so multiple related experiments
can be run from the same control directory.

Setting up the laboratory

Before running an experiment, you must first set up the laboratory for the
associated numerical model if it does not already exist.

First, check the list of supported models:

payu list

This shows the keyword for each supported model.

Automatic setup

To initialise the model laboratory, type:

payu init -m model

where model is the model name from payu list. This will create the
laboratory directory tree.

Automatic compilation of models is no longer supported.

Manual setup

If the automated approach does not work you will have to set up the laboratory
manually.

	Create a directory for the laboratory to reside. The default directory path
is shown below:

mkdir -p /scratch/${PROJECT}/${USER}/${MODEL}

where ${MODEL} is from the list of supported models. For example, if
your username is abc123 and your default project is v45, then the
default laboratory directory for the MOM ocean model would be
/scratch/v45/abc123/mom.

	Create subdirectories for the model binaries and input fields:

cd /scratch/${PROJECT}/${USER}/${MODEL}
mkdir bin input

Populate laboratory directories

	Compile a model and copy its executable into the bin directory in the laboratory:

cp /path/to/exec bin/exec

You will want to give the executable a unique name.

	Create or gather any input data files into an subdirectory in the input directory in the
laboratory:

mkdir input/my_data
cp /path/to/data input/my_data/

You will want a unique name for each input directory.

Clone experiment

Cloning is the best way to copy an experiment as it guarantees that only the
required files are copied to a new control directory, and maintains a link
to the original experiment through the shared git history. To clone the
repository, you can use payu clone. This is a wrapper around git clone
which additionally creates or updates the metadata file which gets copied to
the experiment archive directory (see Metadata and Related Experiments).
For example:

mkdir -p ${HOME}/${MODEL}
cd ${HOME}/${MODEL}
payu clone ${REPOSITORY} my_expt
cd my_expt

Where ${REPOSITORY} is the git URL or path of the repository to clone from,
for example, https://github.com/payu-org/mom-example.git.

To clone and checkout an existing git branch, use the --branch flag and
specify the branch name:

payu clone --branch ${EXISTING_BRANCH} ${REPOSITORY} my_expt

To create and checkout a new git branch use --new-branch and specify a
new branch name:

payu clone –new-branch ${NEW_BRANCH} ${REPOSITORY} my_expt

To see more configuration options for payu clone,
run:

payu clone --help

As an alternative to creating and checking out branches with payu clone,
payu checkout can be used instead (see Metadata and Related Experiments).

Create experiment

If a suitable experiment does not already exist it will have to be
created manually:

	Return to the home directory and create a control directory:

mkdir -p ${HOME}/${MODEL}/my_expt
cd ${HOME}/${MODEL}/my_expt

Although the example control directory here is in the user’s home directory,
they can be placed anywhere and there is no predefined location.

	Populate the control directory.

Copy any input text files in the control directory:

cp /path/to/configs ${HOME}/${MODEL}/my_expt

Configure the experiment in a config.yaml file, such as the one shown
below for MOM:

Scheduler settings
queue: normal
ncpus: 1
walltime: 10:00
jobname: bowl1

Model settings
model: mom
shortpath: /scratch/v45
exe: fms_MOM_solo.x
input: bowl1

Postprocessing
collate:
 walltime: 10:00
 mem: 1GB

See the Configuring your experiment section for more details.

Running your experiment

Once the laboratory has been created and the experiment has been configured, as
an optional step you can check that the paths have been correctly specified by
running:

payu setup

This creates the temporary work directory and is done automatically when
the model is run. If there any errors in the configuration, such as incorrect
or missing paths, these can be fixed. payu will not run the model if there
is an existing work directory, so this must be removed (see Cleaning up).

The setup command will also generate manifest files in the manifest
directory. The manifest files track the executable, input and restart files used
in each run. When running at NCI the manifest file must be present as it is
scanned for storage points in order to correctly specify the argument to the
`-l storage=` option when submitting a PBS job.

It is possible to create an experiment configuration such that the input
and executable manifests are correct if the experiment is run on the same
system. In such a case the manifest options need to be set correctly
to always reuse those manifests and it should be possible to run the
experiment immediately.

Once you are satisfied the configuration is correct, and there is no existing
`work` directory, run the experiment by typing the following:

payu run

This will run the model once and store the output in the `archive` directory.

Optionally if there is an existing work directory the -f/--force flag
will automatically sweep any existing work directory:

payu run -f

To continue the simulation from its last point, type payu run again.

In order to schedule N successive runs, use the -n flag:

payu run -n N

If there are no archived runs, then the model will initialise itself. If the
model has been run K times, then it will continue from this point and run
N more jobs.

If you need to run (or re-run) the Kth job, rather than the most recent
run, use the -i flag:

payu run -i K

Note that job numbering is 0-based, so that the first run is 0, the second run
is 1, and so on.

Running jobs are stored in laboratory’s work subdirectory, and completed
runs are stored in the archive subdirectory.

If you have instructed payu to run for a number of resubmits but for some
reason need to stop a run after the current run has completed create a file
called stop_run in the control directory.

It is possible to require that a run reproduce an existing run using the
-r/--reproduce flag:

payu run -r

When this invoked all the manifests are read in and hashes checked for consistency
and only if all executables, inputs and restart files are unchanged will the run
proceed. As the restart files are read directly from the manifests which are written
before the previous run completed, by definition a restart run will not look for
or use any restart files that are more recent.

The reproduce option can be useful to be able to re-run a simulation for the
purposes of checking reproducibility when compute infrastructure changes, or when
spinning off a perturbation run to ensure consistency with a control run before
applying modifications.

To run from an existing model run, also called a warm start, set the
restart option to point to the folder containing the restart files
from a previous matching experiment.

If restart pruning configuration has changed, there may be warnings if
many restarts will be pruned as a result. If this is desired, at the next
run use -F/--force-prune-restarts flag:

payu run –force-prune-restarts

Cleaning up

If you experiment crashes or fails for any reason, then payu will usually abort
and keep any remaining files in the work and control directories.

To clean up a failed job and prepare it for resubmission, use the sweep
command:

payu sweep

This will delete the contents of work and move any model and scheduler logs
into a pbs_logs directory. Any model output in archive will not be
deleted.

Deleting an experiment archive

If you also want to delete all runs from an experiment in the archive,
use the --hard flag:

payu sweep --hard

This will delete your runs and can potentially erase months of work, so
use it with caution.

Hard sweeps will only delete the run output for your particular experiment.
Other experiment runs will not be harmed by this command.

Postprocessing

Model output in parallel jobs is sometimes divided across several files, which
can be inconvenient for analysis. Payu offers a collate subcommand to
collate these separated files into a single file. This is only necessary, and
supported, for some models.

For most jobs, collation is called automatically. But if you need to manually
collate output from run K, type the following:

payu collate -i K

This will also collate restart K-1 if restart: true in the collate
section of the configuration file.

Alternatively you can directly specify a directory name:

payu collate -d dir_name

This is useful when the data files have been moved out of the payu
directory structure, or if you need to collate restart files, which is
necessary when changing processor layout.

To manually sync experiment output files to a remote archive, firstly ensure
that path in the sync namespace in config.yaml,
is correctly configured as it may overwrite any pre-exisiting outputs.
Then run:

payu sync

By default payu sync will not sync the latest restarts that may be pruned
at a later date. To sync all restarts including the latest restarts, use the
--sync-restarts flag:

payu sync --sync-restarts

Metadata and Related Experiments

Metadata files

Each experiment has a metadata file, called metadata.yaml in the control
directory. This contains high-level metadata about the experiment and uses
the ACCESS-NRI experiment schema [https://github.com/ACCESS-NRI/schema/blob/main/experiment_asset.json]. An important field is the experiment_uuid
which uniquely identifies the experiment. Payu generates a new UUID when:

	Using payu to clone a pre-existing git [https://git-scm.com] repository of the control directory

	Using payu to create and checkout a new git branch in the control directory

	Or, when setting up an experiment run if there is not a pre-existing metadata
file, UUID, or experiment archive directory.

For new experiments, payu may generate some additional metadata fields. This
includes an experiment name, creation date, contact, and email if defined in
the git configuration. This also includes parent experiment UUID if starting
from restarts and the experiment UUID is defined in metadata of the parent directory
containing the restart.

Once a metadata file is created or updated, it is copied to the directory
that stores the archived experiment outputs.

Experiment names

An experiment name is used to identify the experiment inside the work and
archive sub-directories inside the laboratory.

The experiment name historically would default to the name of the control
directory. This is still supported for experiments with pre-existing
archived outputs. To support git branches and ensure uniqueness in shared
archives, the new default behaviour is to add the branch name and a short
version of the experiment UUID to the name of the control directory when
creating experiment names.

For example, given a control directory named
my_expt and a UUID of 416af8c6-d299-4ee6-9d77-4aefa8a9ebcb,
the experiment name would be:

	my_expt-perturb-416af8c6 - if running an experiment on a branch named
perturb.

	my_expt-416af8c6 - if the control directory was not a git repository or
experiment was run from the main or master git branch.

To preserve backwards compatibility, if there’s a pre-existing archive under
the control directory name, this will remain the experiment name (e.g.
my_expt in the above example). Similarly, if the experiment value is
configured (see Configuring your experiment), this will be used for the experiment name.

Switching between related experiments

To be able to run related experiments from the same control directory
using git branches, you can use payu checkout which is a wrapper around
git checkout. Creating new branches will generate a new UUID, update metadata
files, and create a branch-UUID-aware experiment name in archive.
Switching branches will change work and archive symlinks in the control
directory to point to directories in laboratory if they exist.

To create a git branch for a new experiment, use the -b flag.
For example, to create and checkout a new branch called perturb1, run:

payu checkout -b perturb1

To create a new experiment from an existing branch, specify the branch name
or a commit hash after the new branch name. For example,
the following creates a new experiment branch called perturb2
that starts from perturb1:

payu checkout -b perturb2 perturb1

To specify a restart path to start from, use the --restart/ -r flag,
for example:

payu checkout -b perturb --restart path/to/restart

Note: This can also be achieved by configuring restart (see Configuring your experiment).

To checkout and switch to an existing branch and experiment, omit the -b flag.
For example, the following checks out the perturb1 branch:

payu checkout perturb1

To see more payu checkout options, run:

payu checkout --help

For more information on git branches that exist in the control directory
repository, run:

payu branch # Display local branches UUIDs
payu branch --verbose # Display local branches metadata
payu branch --remote # Display remote branches UUIDs

Configuring your experiment

This section outlines the configuration of an individual experiment, which is
stored in the config.yaml file.

Configuration files are written in the YAML [http://www.yaml.org/] file format. YAML allows us to
store and configure both individual fields as well as higher data structures,
such as lists and dictionaries. Data can also be encapsulated in larger
structures. This is indicated by whitespace in the file, which is significant
in YAML.

Configuration Settings

Scheduler

These settings are primarily used by the PBS scheduler.

	queue (Default: normal)
	The PBS queue to submit your job. Equivalent to qsub -q queue.

	project (Default: $PROJECT)
	The project from which to submit the model (and deduct CPU hours).
Equivalent to qsub -P PROJECT. The default value is the current
$PROJECT environment variable. Note that project is used as part of
the default configuration for various laboratory filepaths.

	jobname (Default: Control directory name)
	The name of the job as it appears in the PBS queue. If no name is provided,
then it uses the name of the experiment’s control directory.

	ncpus
	The number of CPUs used during model simulation. Usually equivalent to
qsub -l ncpus=N. This is the number passed on to mpirun during model
execution.

Although it usually matches the CPU request, the actual request may be
larger if npernode is being used.

	ncpureq
	Hard override for the number of cpus used in the PBS submit. This is useful
when the number of CPUs used in the mpirun command is not the same as
the number of cpus required. For example, when running an OpenMP only model
like qgcm, set ncpus=1, and then set ncpureq to the number of
threads required to run the model.

	npernode
	The number of CPUs used per node. This settings is passed on to mpirun
during model execution. In most cases, this is converted into an equivalent
npersocket configuration.

This setting may be needed in cases where a node is unable to efficiently
use all of its CPUs, such as performance issues related to NUMA.

	mem (Default: 192GiB per node)
	Amount of memory required for the job. Equivalent to qsub -l mem=MEM.
The default value requests (almost) all of the nodes’ memory for jobs using
multiple nodes.

In general, it is good practice to keep this number as low as possible.

	platform
	
	Set platform specific defaults. Available sub options:
	
	nodemem
	Override default memory per node. Used when memory not specified to
calculate memory request

	nodesize
	Override default ncpus per node. Used to calculate ncpus to fully
utilise nodes regardless of requested number of cpus

	walltime
	The amount of time required to run an individual job, specified as
hh:mm:ss. Equivalent to qsub -l walltime=TIME.

Jobs with shorter walltimes will generally be prioritised ahead of jobs with
longer walltimes.

	priority
	Job priority setting. Equivalent to qsub -p PRIORITY.

	umask (Default: 027)
	Default permission mask (“umask”) for new files created during model
execution. Nonzero values will disable specific permissions, following
standard octal notation.

The first digit should be a zero when using standard octal format.

	qsub_flags
	This is a generic configuration marker for any unsupported qsub flags. This
setting is applied to any qsub calls.

	jobfs
	Request a non-default amount of storage that is local to the compute.
See NCI jobfs documentation [https://opus.nci.org.au/display/Help/PBS+Directives+Explained#PBSDirectivesExplained--ljobfs=%3C10GB%3E] and the CLEX blog for details [https://climate-cms.org/posts/2022-11-10-jobfs.html#what-is-pbs-jobfs].

	storage
	On the NCI system gadi all storage mount points must be specified, except
/home and /scratch/$PROJECT. By default payu will scan all relevant
configuration paths and manifests for filepaths that are stored on mounts
that begin with /scratch or /g/data, and add the correct storage
flags to the qsub submission. In cases where payu cannot determine all
the required storage points automatically they can be specified using the
storage option. Each key is a storage mount point descriptor, and
contains an array of project code values:

storage:
 gdata:
 - x00
 - a15
 scratch:
 - zz3

Model

These settings are part of general model execution, including OpenMPI
configuration.

	model (Default: Parent directory of control directory)
	The model (or coupled model configuration) used in the experiment. This
model name must be one of the supported models shown in payu list.

If no model name is provided, then it will attempt to infer the model based
on the parent directory of the experiment. For example, if we run our
experiment in ~/mom/bowl1, then mom will be used as the model type.
However, it is generally better to specify the model type.

	shortpath (Default: /scratch/${PROJECT})
	The top-level directory for general scratch space, where laboratories and
model output are stored. Users who run from multiple projects will generally
want to set this explicitly.

	input
	Listing of the directories containing model input fields, linked to the
experiment during setup. This can either be the name of a directory in the
laboratory’s input directory:

input: core_inputs

the absolute path of an external directory:

input: /scratch/v45/core_input/iaf/

or a list of input directories:

input:
 - year_100_restarts
 - core_inputs
 - /scratch/v45/core_input/iaf/

If there are files in each directory with the same name, then the earlier
directory of the list takes precedence.

	exe
	Binary executable for the model. This can either be a filename in the
laboratory’s bin directory, or an absolute filepath. Various model
drivers typically define their own default executable names.

	submodels
	If one is running a coupled model containing several submodels, then each
model is configured individually within a submodel namespace, such as in
the example below for the ACCESS driver:

model: access
submodels:
 atmosphere:
 model: matm
 exe: matm_MPI1_nt62.exe
 input: iaf_matm_simon
 ncpus: 1
 ocean:
 model: mom
 exe: fms_MOM_ACCESS_kate.x
 input: iaf_mom
 ncpus: 120
 ice:
 model: cice
 exe: cice_MPI1_6p.exe
 input: iaf_cice
 ncpus: 6
 coupler:
 model: oasis
 input: iaf_oasis
 ncpus: 0

	restart_freq (Default: 5)
	Specifies the rate of saved restart files. This rate can be either an
integer or date-based. For the default rate of 5, we
keep the restart files for every fifth run (restart000, restart005,
restart010, etc.). To save all restart files, set restart_freq: 1.

If restart_history is not configured, intermediate restarts are not
deleted until a permanently archived restart has been produced.
For example, if we have just completed run 11, then
we keep restart000, restart005, restart010, and restart011.
Restarts 11 through 14 are not deleted until restart015 has been saved.

To use a date-based restart frequency, specify a number with a time unit.
The supported time units are YS - year-start, MS - month-start,
W - week, D - day, H - hour, T - minute and S - second.
For example, restart_freq: 10YS would save earliest restart of the year,
10 years from the last permanently archived restart’s datetime.

Please note that currently, only ACCESS-OM2, MOM5 and MOM6 models support
date-based restart frequency, as it depends on the payu model driver being
able to parse restarts files for a datetime.

	restart_history
	Specifies how many of the most recent restart files to retain regardless of
restart_freq.

The following model-based tags are typically not configured

	user (Default: ${USER})
	The username used to construct the laboratory paths. It is generally
recommended that laboratories be stored under username, so this setting is
usually not necessary (nor recommended).

	laboratory (Default: /scratch/${PROJECT}/${USER}/${MODEL})
	The top-level directory for the model laboratory, where the codebase, model
executables, input fields, running jobs, and archived output are stored.

	control (Default: current directory)
	The control path for the experiment. The default setting is the path of the
current working directory.

	experiment
	The experiment name used for archival. This will override the experiment
name generated using metadata and existing archives
(see Metadata and Related Experiments).

Manifests

payu automatically generates and updates manifest files. See Manifests
section for details.

	reproduce
	These options allow fine-grained control of manifest checking to enable
reproducible experiments. The default value is the value of the global
reproduce flag, which is set using a command line argument and
defaults to False. These options override the global reproduce
flag. If set to True payu will refuse to run if the hashes in the
relevant manifest do not match.

	exe (Default: global reproduce flag)
	Enforce executable reproducibility. If set to True will refuse to
run if hashes do not match.

	input (Default: global reproduce flag)
	Enforce input file reproducibility. If set to True will refuse to
run if hashes do no match. Will not search for any new files.

	restart (Default: global reproduce flag)
	Enforce restart file reproducibility.

	scaninputs (Default: True)
	Scan input directories for new files. Set to False when reproduce input
is True.

If a manifest file is complete and it is desirable to not add spurious
files to the manifest but allow existing files to change, setting this
option to False would allow that behaviour.

	ignore (Default: .*):
	List of glob patterns which match files to ignore when scanning input
directories. This is an array, so multiple patterns can be specified on
multiple lines. The default is .* which ignores all hidden files on a
POSIX filesystem.

Collation

Collation scheduling can be configured independently of model runs. Not all
models support, or indeed require, collation. Collation is currently supported
for MITgcm and any of the FMS based models (MOM, GOLD, SIS).

The collate process joins a number of smaller files which contain different
parts of the model grid together into target output files.

Parallelisation of collation is supported for FMS based models using threaded
multiprocessing. Collation time can be reduced if there are multiple target
collate files. The magnitude of the collation time reduction depends a great
deal on the time taken to collate each target file, the number of such files,
and the number of cpus used. It is difficult to say a priori what settings are
optimal: some experimentation may be necessary.

There is also experimental support for MPI parallelisation when using
mppnccombine-fast [https://github.com/coecms/mppnccombine-fast]

Collate options are specified as sub-options within a separate collate
namespace:

	enable (Default: True)
	Flag to enable/disable collation

	queue (Default: copyq)
	PBS queue used for collation jobs.

	walltime
	Time required for output collation.

	mem (Default: 2GB)
	Memory required for output collation.

FMS based model only options:

	ncpus
	Number of cpus used for collation.

	ignore
	Ignore these target files during collation. This can either be a single
filename or a list of filenames.

	flags
	Specify the flags passed to the collation program. Defaults depend on value
of mpi flag

	exe
	Binary executable for the collate program. This can be either a filename in
the laboratory’s bin directory, or an absolute filepath.

	restart (Defaut: False)
	Collate restart files from previous run.

	mpi
	Use mpi parallelism and mppnccombine-fast [https://github.com/coecms/mppnccombine-fast].

	glob
	When mpi is True attempt to generate an equivalent glob string for
the list of files being collated to avoid issues with limits on the number
of arguments for an command being run using MPI

	threads (Default: 1)
	When mpi is True it is also possible to still use multiple threads
by specifying this option. The number of cpus used for each collation thread
is then ncpus / nthreads

Postprocessing

	collate (Default: True)
	Controls whether or not a collation job is submitted after model execution.

This is typically True, although individual model drivers will often set
the default value to False if collation is unnecessary.

See above for specific collate options.

	userscripts
	Namelist to include separate userscripts or subcommands at various stages of
a payu submission. Inputs can be either script names (some_script.sh) or
individual subcommands (echo "some_data" > input.nml, qsub
some_script.sh).

Specific scripts are defined below:

	init
	User-defined command to be called after experiment initialization, but
before model setup.

	setup
	User-defined command to be called after model setup, but prior to model
execution.

	run
	User-defined command to be called after model execution but prior to
model output archive.

	archive
	User-defined command to be called after model archival, but prior to any
postprocessing operations, such as payu collate.

	error
	User-defined command to be called if model does not run correctly and
returns an error code. Useful for automatic error postmortem.

	sync
	User-defined command to be called at the start of the sync pbs job.
This is useful for any post-processing before syncing files to a remote
archive.

	postscript
	This is an older, less user-friendly, method to submit a script after payu
has completed all steps that might alter the output directory. e.g. collation.
Unlike the userscripts, it does not support user commands. These scripts
are always re-submitted via qsub.

	sync
	Sync archive to a remote directory using rsync. Make sure that the
configured path to sync output to, i.e. path, is the correct location
before enabling automatic syncing or before running payu sync.

If postscript is also configured, the latest output and restart files will
not be automatically synced after a run.

	enable (Default: False):
	Controls whether or not a sync job is submitted either after the archive or
collation job, if collation is enabled.

	queue (Default: copyq)
	PBS queue used to submit the sync job.

	walltime (Default: 10:00:00)
	Time required to run the job.

	mem (Default: 2GB)
	Memory required for the job.

	ncpus (Default: 1)
	Number of ncpus required for the job.

	path
	Destination path to sync archive outputs to. This must be a unique
absolute path for your experiment, otherwise, outputs will be
overwritten.

	restarts (Default: False)
	Sync permanently archived restarts, which are determined by
restart_freq.

	rsync_flags (Default: -vrltoD --safe-links)
	Additional flags to add to rsync commands used for syncing files.

	exclude
	Patterns to exclude from rsync commands. This is equivalent to rsync’s
--exclude PATTERN. This can be a single pattern or a list of
patterns. If a pattern includes any special characters,
e.g. .*+?|[]{}(), it will need to be quoted. For example:

exclude:
 - 'iceh.????-??-??.nc'
 - '*-IN-PROGRESS'

	exclude_uncollated (Default: True if collation is enabled)
	Flag to exclude uncollated files from being synced. This is equivalent
to adding --exclude *.nc.*.

	extra_paths
	List of glob patterns which match extra paths to sync to remote
archive. This can be a single pattern or a list of patterns.
Note that these paths will be protected against any local delete options.

	remove_local_files (Default: False)
	Remove local files once they are successfully synced to the remote
archive. Files in protected paths will not be deleted. Protected paths
include the extra_paths (if defined), last output, the last saved
restart (determined by restart_freq), and any subsequent restarts.

	remove_local_dirs (Default: False)
	Remove local directories once a directory has been successfully synced.
This will delete any files in local directories that were excluded from
syncing. Similarly to remove_local_files, protected paths will not be
deleted.

	runlog (Default: True)
	Create or update a bare git repository clone of the run history, called
git-runlog, in the remote archive directory.

Experiment Tracking

	runlog
	Automatically commits changes to configuration files and manifests in the
control directory when the model runs. This creates a git runlog of the
history of the experiment.

enable (Default: True)
Flag to enable/disable runlog.

	metadata
	Generates and updates metadata files and unique experiment IDs (UUIDs). For more details, see
Metadata and Related Experiments.

	enable (Default: True)
	Flag to enable/disable creating/updating metadata files and UUIDs.
If set to False, the experiment name used for archival is either the
control directory name or the configured experiment name.

	model (Default: The configured model value)
	Model name used when generating metadata for new experiments.

Miscellaneous

	restart
	Specify the full path to a restart directory from which to start the run.
This is known as a “warm start”. This option has no effect if there is an
existing restart directory in archive, and so does not have to be
removed for subsequent submissions.

	debug (Default: False)
	Enable the debugger for any mpirun jobs. Equivalent to mpirun
--debug. At NCI this defaults to a Totalview session. This will probably
only work for interactive sessions.

	mpi
	Override default MPI module and add MPI command line arguments.

	runcmd (Default: mpirun)
	Specify command to invoke MPI executables.

	modulepath
	Set path for environment module to find and load MPI module.

	module
	Override default MPI module version. Default is determined dynamically
by inspecting the model executables.

	flags
	Set command line arguments (flags) to the mpirun call of the
model. This setting supports both single lines and a list of input
arguments. Example shown below:

mpi:
 flags:
 - -mca mpi_preconnect_mpi 1 # Enable preconnecting
 - -mca mtl ^mxm # Disable MXM acceleration
 - -mca coll ^fca # Disable FCA acceleration

	mpirun (Deprecated)
	Replicates mpi flags above.

	env
	Enable any environment variables required by mpirun during execution,
such as OMPI_MCA_coll. The following example below disables “matching
transport layer” and “collective algorithm” components:

env:
 OMPI_MCA_coll: ''
 OMPI_MCA_mtl: ''

	stacksize
	Set the stacksize for each process in kiB. unlimited is also a valid
setting (and typically required for many models).

Note: unlimited works without any issues, but explicit stacksize
values may not be correctly communicated across compute nodes.

	runspersub
	Define the maximum number of runs per PBS job submit. The default is 1.
The actual number of runs per PBS submit will be the minimum of
runspersub and the total number of runs set with the -n
command-line flag.

	repeat
	Ignore any restart files and repeat the initial run upon resubmission. This
is generally only used for testing purposes, such as bit reproducibility.

	modules
	Specify lists of environment modules and/or directories
to load/use at the start of the PBS job, for example:

modules:
 use:
 - /path/to/module/directory
 load:
 - netcdf-c-4.9.0
 - parallel-netcdf-1.12.3
 - xerces-c-3.2.3

This is seldom needed, because payu is good at automatically determining
the environment modules required by model executables. If the modules
require module use in order to be found, this command can also be run
prior to payu run instead of listing the directory under the use option,
e.g.:

module use /path/to/module/directory
payu run

Manifests

Introduction

payu automatically generates and updates manifest files in the manifest
subdirectory in the control directory. The manifests are stored in YAML [http://www.yaml.org/]
format.

There are three manifests: manifest/exe.yaml tracks executable files,
manifest/input.yaml tracks input files and manifest/restart.yaml
tracks restart files.

Only files in the temporary work directory are tracked by manifests. Any
files that are directly accessed from other locations in the filesystem
within models or other programs are not tracked

Manifest contents

The manifests store information about the files contained in the
work directory of an experiment. In most cases those files are symbolically
linked from another location.

An example input manifest is shown below:

format: yamanifest
version: 1.0

work/INPUT/gotmturb.inp:
 fullpath: /scratch/x00/aaa000/mom/input/bowl1/gotmturb.inp
 hashes:
 binhash: 1730d092cdc5d86e234d3749857ed318
 md5: 3016ea3bccf1acd2c18eefdd6dbf02e9
work/INPUT/grid_spec.nc:
 fullpath: /scratch/x00/aaa000/mom/input/bowl1/grid_spec.nc
 hashes:
 binhash: b79c406507e2b96725a08237e2165314
 md5: f571a0106c4a2eba38e3c407335e8cca
work/INPUT/ocean_temp_salt.res.nc:
 fullpath: /scratch/x00/aaa000/mom/input/bowl1/ocean_temp_salt.res.nc
 hashes:
 binhash: d70322dece2f10aaacf751254a2acee7
 md5: f506e15417ed813fde3516a262ff35e5

The first section of the file specifes a format (yamanifest) and a version
number (1.0). The second section has a local path in the work directory
as the key, and for each of these paths stores the location in the filesystem
(fullpath) and two hashes, binhash and md5.

There are two hashes as binhash is fast and size independent designed
just to detect if a file has changed. If the calculated binhash is not the same
as that stored in the manifest the slower but robust MD5 hash is calculated.
Whenever a hash changes the updated value is stored in the manifest file.

Experiment tracking

The manifest files are automatically added to the git repository that
tracks changes to the experimental configuration. Each time
the model is run the manifest is checked and changed hashes are updated,
and any new files found are added to the manifest.

In this way manifests uniquely identify all executables, input and restart files
for each model run.

Manifest updates

Each of the manifests is updated in a slightly different way which reflects
the way the files are expected to change during an experiment.

The executable manifest is recalculated each time the model is run.
Executables are generally fairly small in size and number, so there is very
little overhead calculating full MD5 hashes. This also means there is no
need to check that exectutable paths are still correct and also any
changes to executables are automatically included in the manifest.

The restart manifest is also recalculated for every run as there is no expectation
that restart (or pickup) files are ever the same between normal model runs.

The input manifest changes relatively rarely and can often contain a small
number of very large files. It is this combination that can cause a significant
time overhead if full MD5 hashes have to be computed for every run. By using
binhash, a fast change-sensitive hash, these time consuming hashes only
need be computed when a change has been detected. So the slow md5 hashes
are recalculated as little as possible.

Manifest options

By default manifests just reflect the state of the model, and when files
change the update hashes are saved in the manifest. These changes in the
manifest files are then tracked with git.

There are some configuration options available to change this default
behaviour.

Design Notes

This section describes miscellaneous information about the design of payu.

Model and Experiment Layout

Laboratory Structure

An experiment requires that the model executable, configuration, and data files
be staged in the appropriate directories, outlined below:

	Control Path
	Configuration files are stored here, and is also the directory where
payu is invoked. This is usually the current working directory.

	Laboratory Path
	This is the top-level directory for a particular model, and contains the
model executables, input data, and model output for all experiments using
this model. The default directory is /scratch/${PROJECT}/${USER}/${MODEL}.

Herein, ${LAB} refers to the laboratory path.

	Executable Path
	Model executables are stored here. The default is ${LAB}/bin.

	Input Path
	Data files are stored here. The default is ${LAB}/input.

	Codebase Path (not currently supported)
	The sourcecode of the current active executable will be stored in this
directory. The default is ${LAB}/codebase.

	Archive Path
	Model output is stored in this directory, separated by experiment. For an
experiment named myrun, the archived output is stored in
${LAB}/archive/myrun/output000, output001, output002, etc. and
restart information is stored in restart000, restart001, etc.

	Work Path
	Experiments that are actively running are stored in the work path. For an
experiment named myrun, the default directory is ${LAB}/work/myrun.

Style Guide

These are various unorganised notes on preferred coding style for payu. While
it’s unlikely that every file adheres to this style, it should generally be
adopted where possible.

	All files should adhere to PEP8 rules. In particular, no warnings should be
reported by pycodestyle using default settings.

	Docstrings should similarly adhere to PEP257, as reported by pydocstyle.
(Currently conformance to this rule is admittedly very poor.)

In particular, help() should be readable and well-formatted for every
module and function.

	Imports should be one per line (as in PEP8), and ideally alphabetical (as
recommended by PyLint). Additionally, we separate these into three groups
with a blank line, and in this order:

	Future statements

	Standard library modules

	Dependencies

	Modules local to the project

Example import:

from __future__ import print_function

import os
import shlex
import sys

import requests
import yaml

import payu.envmod

	Modules should not be renamed. This is bad:

import numpy as np

This is good:

import numpy

The reason here is to preserve shorter names for other uses in the code.
But, as usual, the HHGP’s section on modules [http://docs.python-guide.org/en/latest/writing/structure/#modules] explains this better than I
can within a bullet point list.

(Also note that this is another rule with poor conformance.)

	Multiple equivalence checks should use tuples. This is bad:

if x == 'a' or x == 'b':

This is good:

if x in ('a', 'b'):

Index

 nav.xhtml

 Table of Contents

 		
 Payu

 		
 Installation

 		
 NCI Users

 		
 Local installation

 		
 General Use

 		
 Usage

 		
 Overview

 		
 Using a git repository for the experiment

 		
 Setting up the laboratory

 		
 Automatic setup

 		
 Manual setup

 		
 Populate laboratory directories

 		
 Clone experiment

 		
 Create experiment

 		
 Running your experiment

 		
 Cleaning up

 		
 Deleting an experiment archive

 		
 Postprocessing

 		
 Metadata and Related Experiments

 		
 Metadata files

 		
 Experiment names

 		
 Switching between related experiments

 		
 Configuring your experiment

 		
 Configuration Settings

 		
 Scheduler

 		
 Model

 		
 Manifests

 		
 Collation

 		
 Postprocessing

 		
 Experiment Tracking

 		
 Miscellaneous

 		
 Manifests

 		
 Introduction

 		
 Manifest contents

 		
 Experiment tracking

 		
 Manifest updates

 		
 Manifest options

 		
 Design Notes

 		
 Model and Experiment Layout

 		
 Laboratory Structure

 		
 Style Guide

_static/plus.png

_static/file.png

_static/minus.png

